Approved by:	
Checked by:	
Issued by:	

Surface-Acoustic-Wave Resonator SPECIFICATION

LR1 315.00

Ideal for 315.00MHz Transmitters
Low Series Resistance
Quartz Stability
Rugged, Hermetic, Low-profile TO-39 Case

The LR1 315.00 is a true one-port, surface-acoustic-wave (SAW) resonator in low-profile TO-39 case. It provides reliable, fundamental-mode. quartz frequency stabilization of fixed-frequency transmitters operating at 315 MHz. The LR1 315.00 is designed specifically for wireless remote controls and security transmitters. Typically for automotive-keyless-entry, operating in the USA under FCC Part15, in Canada under DoC RSS-210. and in Italy.

315.00 MHz SAW Resonator

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See Typical Test Circuit)	+0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	$^{\circ}\mathbb{C}$

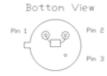
Electrical Characteristics

Characteristics			Notes	Minimum	Typical	Maximum	Units
Center Frequency (+25℃)	Absolute Frequency	f _c		314.925		315.075	MHz
	Tolerance from 315.000MHz	Δf _c	2,3,4,5			±75	KHz
Insertion Loss	Insertion Loss		2,5,6		1.5	2.2	dB
Quality Factor	Unloaded Q	Q _U			13.300		
	50Ω loaded Q	Q _L	5,6,7		2.000		
Temperature Stability	Turnover Temperature	To		10	25	40	$^{\circ}$
	Turnover Frequency	f _O	5,7,8		f _c		KHz
	Frequency Temperature Coefficient	FTC			0.037		ppm/℃²
Frequency Aging	Absolute Value during the First Year	If _A I	1		≦10		ppm/y τ
DC Insulation Resistance between Any Two Pins			5	1.0			M Ω
RF Equivalent RLC Model Motional Resistance		R_{M}			19	29	Ω
	Motional Inductance	L _M	5,7,9		127.677		μН
	Motional Capacitance	См	5,7,9		1.99943		pF
	Pin 1 to Pin 2 Static Capacitance	Co	5,6,9	2.3	2.6	2.9	pF
	Transducer Static Capacitance	C _P	5,6,7,9		2.3		pF
Test Fixture Shunt Inductance		L _{TEST}	2,7		100		nH
Lid Symbolization (in Addition to Lot and/or Date Code			LR1 315.00				

CAUTION: electrostatic Sensitive Device, Observe precautions for handling.

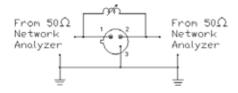
Notes:

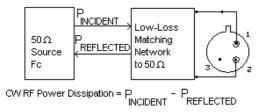
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- 2. The center frequency, f_C , is measured at the minimum insertion loss point, IL_{MIN} with the resonator in the $50\,\Omega$ test system(VSWR \leq 1.2:1).The shunt inductance, L_{TEST} , is turned for parallel resonator with C_O at f_C . Typically, $f_{OSCIILATOR}$ or $f_{TRANSMITTER}$ is less than the resonator f_C .
- One or more of following United States patents apply:4,454,488 and 4,616,197 and others pending.
- Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5. Unless noted otherwise, case temperature $T_c=25^{\circ}C\pm2^{\circ}C$.
- The design, manufacturing process, and specifications of this device are subject to change without notice.


- 7. Derived mathematically from one or more of the following directly measured parameter: f_c , IL, 3dB bandwidth, f_c versus T_c and C_o .
- Turnover temperature, T_o, is the temperature of maximum (or turnover) frequency, f_o. The nominal frequency at any case temperature, T_c. may be calculated from:
 - f=f_o [1-FTC(T_o-T_c)^2]. Typically, oscillator T_o is 20 $^{\circ}\mathrm{C}$ less than the specified resonator T_o.
- This equivalent RLC model approximates resonators performance near the resonant frequency and is provided for reference only. The capacitance C_o is the static (nonmotional) capacitance between pin 1 and pin 2 measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25pF to C_o.

Electrical Connections

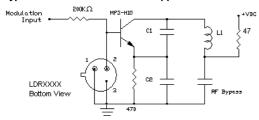
This one-port, two-terminal SAW resonator is bi-directional. The terminals are interchangeable with the exception of circuit board layout.


Pin	Connection
1	Terminal 1
2	Terminal 2
3	Case Ground

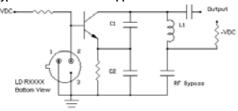

Typical Test Circuit

The test circuit inductor, $L_{\text{TEST}},$ is turn to resonate with the static capacitance, C_o at $F_c.$

Electrical Test:

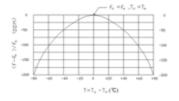


Power Test:

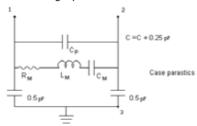


Typical Application Circuits

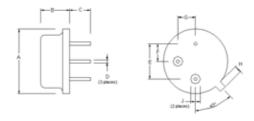
Typical Low-Power Transmitter Application:



Typical Local Oscillator Application:

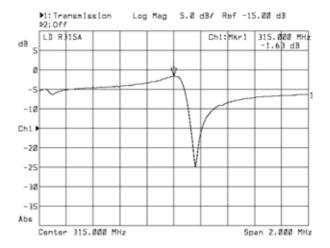

Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.



Equivalent LC Model

The following equivalent LC model is valid near resonance:



Case Design

Dimensions	Millim	eters	Inches		
Dillicitations	Min	Min Max		Max	
Α		9.30		0.366	
В		3.50		0.138	
С	2.50	3.50	0.098	0.138	
D	0.50 Nominal		0.020 Nominal		
E	5.08 Nominal		0.200 Nominal		
F	2.54Nominal		0.100 N	ominal	
G	2.54Nominal		0.100 Nominal		
Н		1.02		0.040	
J	1.75		0.069		

Frequency Response

